System Requirements Review

Riko Oki Oki.riko@nada.go.jp NASDA/SPPD

June 4 - 5, 2002

GPM

NASDA's Earth Observation Satellite Program

- JFY2002: increased to three times from JFY2001 for Phase A study
- Requesting budget to start phase B study in JFY2003. Supposing a dual launch with GCOM-A1 in 2007.
- NASDA's study on the GPM
 - DPR development study
 - *Ku-band radar phase A study by NASDA.*
 - Ka-band radar phase A study by CRL
 - H-IIA dual launch study
 - Ground system design study
 - DPR data processing including DPR algorithms and DPR/Microwave Radiometer algorithms

SRR June 4-5, 2002 - NASDA

Precision brought by DPR

- High sensitivity to detect light rain and snow
- Accurate estimation of rainfall rate
- Separation of snow from rain
- Progress in cloud physics

Global rain map in every 3 hours by GPM

- Climate change assessment monitor variations in rainfall and rain areas associated with climate changes and global warming
- Improvement in weather forecasts
 Quasi-real-time assimilation of data in numerical prediction models,
 Improved flood prediction
- Water resource management river, dam, agricultural water, etc.
- Agricultural production forecasting

- -Science team in Japan
 - GPM algorithm study
 - DPR algorithm
 - DPR/MWR combined algorithm
 - Precipitation system and climate study
 - Study for operational use
 - Weather forecast
 - Water resource management

- NASDA was 2001 CEOS Chair and IGOS-P Chair.
- CEOS Plenary#15 and IGOS-P#8 held in Kyoto, Nov 2001 approved IGOS Water Cycle Theme and CEOP (Coordinated Enhanced Observing Period) as its precursor project.
 - Current IGOS Themes: Ocean, Carbon Cycle, Atmospheric Chemistry, Water Cycle

WSSD (World Summit for Sustainable Development)

- Significant efforts to link CEOS to international conventions, to build demand for EO programmes
 - ESA(2002 CEOS Chair), NOAA and NASDA leading CEOS efforts for WSSD 2002
 - Prepcom II,III meetings, NY / Prepcom IV, Indonesia late May
 - "Water cycle monitoring", "satellite and remote sensing" are included in WSSD Chair paper draft.
 - All CEOS members urged to contact national delegations to build support
- CEOS efforts planned for Johannesburg

WWF (World Water Forum)

- March 16-23, 2003 in Kyoto, Japan
- GPM joint session by NASA and NASDA

- ✓ The standard vehicle can launch a 4-ton-class payload into geostationary transfer orbit (GTO), as same as H-II.
- ✓ The augmented vehicle can launch a 7-ton-class payload into GTO by simply adding a large liquid rocket booster to the standard vehicle.

H-IIA Launch Site (Tanegashima Space Center: TNSC)

JFY	Туре	Satellite
2001*	standard	Test launch
2002*	standard	MDS-1
2002	standard	DRTS
2002	standard	ADEOS-II
2003	standard	IGS #1
2003	standard	MTSAT
2003	standard	IGS #2
2004	standard	ALOS
2004	standard	ETS-VIII

2005	augmented	Test launch
2005	standard	SELENE
2005	augmented	HTV Technology Demonstrator
2005	standard	WINDS
2006	?	?
2006	?	?
2006?	standard	GPM?

*: Already launched successfully

Item	Launch	Ex	ternal		Usable volume		Application
Model	_	Height (m)	Diameter (m)	Portion of fairing	Height (m)	Diameter (m)	
4 S	single	12.0	4.07		10.23	3.7	ETS-VI, COMETS
5S	single	12.0	5.1		9.12	4.6	ADEOS ADEOS-II
4/4D-LS	dual	14.5	4.07	upper	8.23	3.7	TRMM
				lower	3.80	3.7	ETS-VII
4/4D -LD	dual	16.0	4.07	upper	8.23	3.7	None
				lower	5.36	3.7	None
5/4D	5/4D dual	14.1	5.1/4.07	upper	6.70	4.6	SFU
				lower	4.68	3.7	GMS-5

Based on H-IIA User's Manual 2nd Ed.

~

S

Ø

ш

Fairing (type 4/4D-LS)

SRR June 4-5, 2002 - NASDA

8

0

- H-IIA 202 (standard type, GTO 4.1t)
- Fairing: 4/4D-LS (same as TRMM)
- Dual launch with GCOM-A1

ADEOS-II (Launch in 2002)

- H-IIA 202 (standard type, GTO 4.1t)
- Fairing: 5S (same as ADEOS)
- Single launch (altitude 800km, circular orbit)

Assumption Launch: 2007

Orbit: 400x650km Elliptical orbit

Rocket: H-IIA202-4/4DLS

Mass of PAF: 100kg x 2

Mass allocation (kg)

Inclination	GCOM-A1	GPM	Contingency
68 (H2A202)	1350	3000	-650
65 (H2A202)	1350	3000	300
68 (H2A2022)	1350	3000	-400
65 (H2A2022)	1350	3000	650

✓ Dependency on inclination angle mainly comes from the consumption of extra fuel to avoid to fly over populated area such as New Zealand and Brazil.

